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Abstract 

This article deals with the concept of Topological Vector Spaces with an example and the definitions required for 

this. Also we will study continuous mapping on topological spaces.  
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Introduction 

To understand the concept of topological vector spaces, we require following concepts…. 

(Definition-1)VECTOR SPACE:      A non empty set A is called a Vector space or Linear space over a Field (F,+,⋅) if A is 

an Abelian group under an operation which we denote  ‘+’and  if for every a∈F , α∈A  there is defined an element  

aαεA  subjected to  

1. a(α+β) = aα+aβ 

2. (a+b)α = aα+bα 

3. a(bα) = (ab)α 

4. 1α = α For all a,bεF and α,βεA , where 1 represents the unit element of F under multiplication. 

(Definition-2)TOPOLOGY :           A Topology τ defined over a non empty set X is the collection of subsets of set X  

satisfies the following axioms… 

[A1]  X and  Φ belong to τ. 

[A2]  The union of any family of sets in τ  belongs to τ. 

[A3]  The intersection of any two sets in τ  belongs to τ. 

      The set X together with the Topology  τ is called Topological Spaces and written as the pair (X,τ) or simply by X. 

(Definition-3)Metric space:           Let X be a non-empty set. A metric on X, denoted by d is defined as the mapping 

from the Cartesian product X×X into the set of real numbers R satisfying the following conditions……. 

(M1)  d(x,y)  0 for every x,y∈X. This is called non-negative restriction. 

(M2)  d(x,y)=0 if and only if x=y for x,y∈X.                    

(M3)  d(x,y) = d(y,x)  for every x,y∈X. This is called symmetric property of  d.         and  

(M4)  d(x,y) + d(y,z) ≥ d(x,z) for every x,y,z∈X. This is called triangle inequality of  d. 
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    The set X together with the metric d is called metric space and denoted by the pair (X,d) or simply X. There can 

always be defined a topology on X induced by the metric d called natural topology or usual topology on X hence a 

metric space is always a topological space.  

(Definition-4)NORM :         For a given linear space E, over a field F , a norm on E is defined as a map  x→∥x∥  from X 

into the set R⁺ of non negative real numbers which satisfies the following axioms …. 

(N1)   ∥x∥=0 iff  x=0                      (N2)  ∥ʎx∥=∣ʎ∣⋅∥x∥  ∀ ʎ∈F,  x∈X.                               (N3)  ∥x+y∥≤∥x∥+∥y∥  ∀  x,y∈X. 

       A linear space on which a norm is defined is called normed linear space or simply normed space. There can 

always be defined a metric d induced by norm  given as  d( ,x y )= x y  for every ,x y ∈ X. And definition-3 

implies that a topology can be induced by a metric, therefore, every norm space is a topological space. 

Property-1     x y x y      for very ,x y ∈X. 

Since ( )x x y y x y y         (by axiom N3),  implies that x y x y   . 

(Definition-5)CONTINUOUS MAPPING ON  TOPOLOGICAL  SPACES:              Let us consider X and Y are two Topological spaces 

and f  :X→Y.  The mapping f  is said to be continuous at a point x∈X  if for each neighborhood  V of y= f (x) in Y,     
1f 

 (V) is a neighborhood of  x  in X. f   is said to be continuous on X into Y if f   is continuous at each  x∈X. 

            Sequentially (in view of metric spaces), 
f

 is continuous if for x X  every sequence ( )nx  in X converging to x  

, the sequence ( ( ))nf x   in Y converging to  ( )f x   i.e. nx x  ⟹ ( ) ( )nf x f x . i.e. if 1 2&d d  are metrices in X and Y 

respectively then for ϵ>0 there exists δ>0 such that 1 2( , ) ( ( ), ( ))n nd x x d f x f x     . 

Theorem-1                Norm function is a continuous function. 

Solution:      Let X is a normed space with the norm  from X into R. Let the metric induced by norm in X is 
1d x y 

and 2d x y   be the usual metric in R. Now let ( )nx be a sequence in the normed space X such that nx x in X. 

Then for the mapping  , we find that  

n nx x x x         (by property-1), which implies that 1( , ) 0n nx x d x x    as nx x in X. Therefore, we 

get 2( , ) 0n nd x x x x    then definition-5 implies that norm  is a continuous mapping. 

(Definition-6)TOPOLOGICAL VECTOR SPACES :           Let E is a vector space over a field K(real or complex) and a topology τ is 

defined on it. The set E is called a topological vector space if the maps  

 (I) ( , )x y x y   from E E E           and          (II) ( , ) .x x   from K E E              are continuous and then it 

is abbreviated by TVS. The topology defined on E E  is the product topology    and the topology defined on K E  

is the product topology    where μ is the usual topology defined on the field K. 

Theorem-2         Let E is a normed vector space over a field K then the maps (i)   ,x y x y   from E×E into E.   and          

(ii)  , x x   from K×E into E.    are continuous  mapping.  

Solution:      Let <(x,y)> be a sequence in the space E×E converging to a point (a,b) in E×E which implies that x→a 

and y→b in E for which taking 
2

x a     and 
2

y b    , then we have 

( ) ( ) ( ) ( )x y a b x a x b x a y b              (by property N3 of definition-4 ) 

Which implies that ( ) ( )x y a b   . So the mapping ( , )x y x y   from E×E into E is continuous. 
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Now let    , ,x a   in the space K×E which implies that & x a    in their respective spaces. Such that 

&
2 2

x a
a

 
 


     , then we have 

( ) ( )x a x a a a x a a x a a                            i.e. x a   so the 

mapping  ( , ) .x x   from K E E     is continuous. 

Example-1        A normed vector space equipped with the topology defined by its norm is a topological vector space. 

Solution:      Let E is a normed vector space over a field K and d is the metric induced by the norm   on E given as 

( , )d x y x y   and then a topology τ is induced by d on E. Now from theorem-2, we find that the maps 

 (i)   ,x y x y   from E×E into E.   and          (ii)  , x x   from K×E into E.    are continuous  mapping.  

Therefore by definition-6, E is a topological vector space. 

result 

For defining the concept of a TVS, we need the concept of vector space, topology and continuous mapping in 

topological spaces. Example-3 is an example of a TVS for which we need the concept of norm. 
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